Sleep is vital to associating emotion with memory, study finds
Date:February 22, 2021Source:University of MichiganSummary:When you slip into sleep, it’s easy to imagine that your brain shuts down, but new research suggests that groups of neurons activated during prior learning keep humming, tattooing memories into your brain.Share: FULL STORY

Woman sleeping (stock image).Credit: © leszekglasner / stock.adobe.com
When you slip into sleep, it’s easy to imagine that your brain shuts down, but University of Michigan research suggests that groups of neurons activated during prior learning keep humming, tattooing memories into your brain.
U-M researchers have been studying how memories associated with a specific sensory event are formed and stored in mice. In a study conducted prior to the coronavirus pandemic and recently published in Nature Communications, the researchers examined how a fearful memory formed in relation to a specific visual stimulus.
They found that not only did the neurons activated by the visual stimulus keep more active during subsequent sleep, sleep is vital to their ability to connect the fear memory to the sensory event.
Previous research has shown that regions of the brain that are highly active during intensive learning tend to show more activity during subsequent sleep. But what was unclear was whether this “reactivation” of memories during sleep needs to occur in order to fully store the memory of newly learned material.
“Part of what we wanted to understand was whether there is communication between parts of the brain that are mediating the fear memory and the specific neurons mediating the sensory memory that the fear is being tied to. How do they talk together, and must they do so during sleep? We would really like to know what’s facilitating that process of making a new association, like a particular set of neurons, or a particular stage of sleep,” said Sara Aton, senior author of the study and a professor in the U-M Department of Molecular, Cellular and Developmental Biology. “But for the longest time, there was really no way to test this experimentally.”
Now, researchers have the tools to genetically tag cells that are activated by an experience during a specific window of time. Focusing on a specific set of neurons in the primary visual cortex, Aton and the study’s lead author, graduate student Brittany Clawson, created a visual memory test. They showed a group of mice a neutral image, and expressed genes in the visual cortex neurons activated by the image.
To verify that these neurons registered the neutral image, Aton and her team tested whether they could instigate the memory of the image stimulus by selectively activating the neurons without showing them the image. When they activated the neurons and paired that activation with a mild foot shock, they found that their subjects would subsequently be afraid of visual stimuli that looked similar to the image those cells encode. They found the reverse also to be true: after pairing the visual stimulus with a foot shock, their subjects would subsequently respond with fear to reactivating the neurons.
“Basically, the precept of the visual stimulus and the precept of this completely artificial activation of the neurons generated the same response,” Aton said.
The researchers found that when they disrupted sleep after they showed the subjects an image and had given them a mild foot shock, there was no fear associated with the visual stimulus. Those with unmanipulated sleep learned to fear the specific visual stimulus that had been paired with the foot shock.
“We found that these mice actually became afraid of every visual stimulus we showed them,” Aton said. “From the time they go to the chamber where the visual stimuli are presented, they seem to know there’s a reason to feel fear, but they don’t know what specifically they’re afraid of.”
This likely shows that, in order for them to make an accurate fear association with a visual stimulus, they have to have sleep-associated reactivation of the neurons encoding that stimulus in the sensory cortex, according to Aton. This allows a memory specific to that visual cue to be generated.The researchers think that at the same time, that sensory cortical area must communicate with other brain structures, to marry the sensory aspect of the memory to the emotional aspect.
Aton says their findings could have implications for how anxiety and post-traumatic stress disorder are understood.
“To me this is kind of a clue that says, if you’re linking fear to some very specific event during sleep, sleep disruption may affect this process. In the absence of sleep, the brain seems to manage processing the fact that you are afraid, but you may be unable to link that to what specifically you should be afraid of,” Aton said. “That specification process may be one that goes awry with PTSD or generalized anxiety.”
Story Source:
Materials provided by University of Michigan. Note: Content may be edited for style and length.
Journal Reference:
- Brittany C. Clawson, Emily J. Pickup, Amy Ensing, Laura Geneseo, James Shaver, John Gonzalez-Amoretti, Meiling Zhao, A. Kane York, Femke Roig Kuhn, Kevin Swift, Jessy D. Martinez, Lijing Wang, Sha Jiang, Sara J. Aton. Causal role for sleep-dependent reactivation of learning-activated sensory ensembles for fear memory consolidation. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-21471-2
Cite This Page:
University of Michigan. “Sleep is vital to associating emotion with memory, study finds.” ScienceDaily. ScienceDaily, 22 February 2021. <www.sciencedaily.com/releases/2021/02/210222164216.htm>.
advertisement
RELATED STORIES
Sleep Loss Hijacks Brain’s Activity During Learning
Nov. 11, 2020 — Sleep is crucial for consolidating our memories, and sleep deprivation has long been known to interfere with learning and memory. Now a new study shows that getting only half a night’s sleep – as …
‘Nested Sequences’: An Indispensable Mechanism for Forming Memories
Nov. 8, 2018 — A research team has just lifted part of the veil surrounding brain activity during sleep. Though we know that some neurons are reactivated then to consolidate our memories, we did not know how these …
Scientists Try to Crack the Brain’s Memory Codes
June 2, 2017 — In a pair of studies, scientists explored how the human brain stores and retrieves memories. One study suggests that the brain etches each memory into unique firing patterns of individual neurons. …
Finding Traces of Memory Processing During Sleep
May 17, 2017 — Sleep helps us to retain the information that we have learned during the day. We know from animal experiments that new memories are reactivated during sleep. The brain replays previous experience …FROM AROUND THE WEB
ScienceDaily shares links with sites in the TrendMD network and earns revenue from third-party advertisers, where indicated.
- Neural net activations are aligned with gamma band activity of the human visual cortexby Ingrid Fadelli et al., TechXplore.com
- Chemically Induced Guide RNAs Drive CRISPR/Cas9 System for Editing Mouse Neurons In VivoGenomeWeb, 2016
- Artificial visual system of record-low energy consumption for the next generation of AIby City University of Hong Kong, TechXplore.com, 2020
- Mammalian Brain Cortex Cell Populations Characterized by Single-Cell SequencingGenomeWeb, 2018
- Neuroscientists train a deep neural network to process sounds like humans doby Massachusetts Institute of Technology, TechXplore.com
- Researchers in Japan are showing way to decode thoughtsby Nancy Owano et al., TechXplore.com
- Prometheus Biosciences, Takeda Pharmaceutical to Codevelop Targeted Therapies, CDx for IBDstaff reporter, 360Dx, 2019
- Startup PHIX Genomics Aims to Introduce Clinical Molecular Diagnostics to Philippines in 2020Justin Petrone, 360Dx, 2019